RT FORMULAE

1. Geometrical Unsharpness
$$U_g = \frac{d.t}{SFD-t}$$

Where,

d=effective dia. of the source size t=thickness of job SFD= source to film distance

Minimum SFD calculation: $\mathsf{SFD} = \mathsf{t}(1 + \frac{d}{U_a})$

2. Radiation level $R_L = \frac{Activity X RHM}{d^2}$

Where,

RHM = Rontgen per Hour per Meter. d =distance

3. Exposure time = $\frac{film \ factor \ X \ SFD^2 \ X \ 2^n \ X60}{Ci \ X \ RHM \ X \ 100^2}$

Where,

- n = $\frac{x}{HVT}$, x = thickness of the job.HVT=Half Value Layer thickness of steel
- 4. Allowed working Time = $\frac{Dose \ limit}{Dose \ rate}$
- 5. Inverse Square Law: $\frac{I_1}{I_2} = \frac{d_2^2}{d_1^2}$

Isotopes	Half Life	RHM value	Optimum Working Steel Thickness (mm)
lr-192	74.4 days	0.55	10-60 mm
Co-60	5.27 years	1.30	50-200 mm
Tm-170	127 days	0.0025	2-10 mm
Cs-137	33 years	0.34	50-125 mm

Vistit Us at: www.pallakkindt.com *For reference only. PNEC not responsible for errors and omissions in the data if any.

MT FORMULAE

1. Longitudinal Current Calculation: NI = $\frac{45000}{\frac{L}{D}}$

Where,

L = Length of the component

- D = Dia. of the component
- For stationary equipment, current calculations: Circular magnetization for AC : 500 – 800 Amp/Inch Circular magnetization for AC : 800 – 1000 Amp/Inch

3. A.S.T.M. Recommended Prod Spacings and current Values.

Prod Spacing, Inches	Section Thickeness, Inches		
	Under ¾ inch	¾ inch and over	
2 to 4	200 to 300 Amperes	300 to 400 Amperes	
Over 4 to less than 6	300 to 400 Amperes	400 to 600 Amperes	
6 to 8	400 to 600 Amperes	600 to 800 Amperes	

Yoke Calibration checks (Weight lifting capacities):
For A.C Current: 4.5 Kgs for 2 to 6 inch leg spacing
For D.C Current: 18 Kgs for 100 to 150 mm leg spacing

UT FORMULAE

1. Wave length $\lambda = \frac{V}{F}$ Where, V = velocit

V = velocity (Km), F = frequency (MHz)

2. Acoustic Impedance Z = ρ .V Where, ρ = density Kg/m³,

v = velocity m/sec, Z = Kg/m²/sec

3. Reflection R(%) = $\frac{(z_2-z_1)^2}{(z_2+z_1)^2}$ Transmission T(%) = $\frac{4z_2z_1}{(z_2+z_1)^2}$ and T+R=1 Where, Z₁ = Acoustic Impedance – I Z₂ = Acoustic Impedance – II

4. Snell's law : $\frac{Sin i}{Sin r} = \frac{v_i}{v_r}$

Where,

Sin i = incident angle Sin r = refracted angle v_i = Velocity media-I v_r = Velocity media-II

5. Critical Angle Sin $\theta = \frac{v_1}{v_2}$

Where,

v₁=Velocity media-I V₂=Velocity media-II

6. Beam spread: $\sin \theta = \frac{1.22\lambda}{D}$

Where,

 θ =Half angle of beam spread

 λ = Wave length

D=Dia. of the transducer

7. Near field N= $\frac{D^2 F}{4V}$

Where,

D=Dia. of the transducer

*For reference only. PNEC not responsible for errors and omissions in the data if any.

F=Frequency of the transducer V=Velocity of the material

8. dB Calculation dB = 20 Log₁₀ $\frac{H_2}{H_1}$

Where,

H₁ = Echo Hight I H₂ = Echo Hight II

 $\frac{H_2}{H_1} = 10^{N/20}$ Where,

N=dB given

9. Echo Height/ Size / distance :

$$\frac{H_2}{H_1} = \frac{{x_2}^2}{{x_1}^2} \times \frac{{d_1}^2}{{d_2}^2}$$

Where,

 H_1 = Echo Height I H_2 = Echo Height II x_1 = Size of defect I x_2 = Size of defect II d_1 = Distance of defect I d_2 =distance of defect II

10. Focal length

$$\mathsf{R} = \mathsf{F} \, \frac{(n-1)}{n}$$

Where,

R = Radius of curvature of the lens

F = Focal length of water

n = the ratio of velocity = V_1/V_2

11. Attenuation coefficient

 $\frac{dB}{M} = \frac{(Hx_1 - Hx_2)dB - 20\log_{10}\frac{x_2}{x_1}}{2(x_2 - x_1)}$

Where,

 $(Hx_1 - Hx_2)dB$ = dB difference x₁ = Echo height I x₂ = Echo height II

12. Focused Probe:

$$X_m$$
-(f_w - X_w) $\frac{Vw}{Vm}$

Where,

 V_w = Velocity of water km/sec V_m = Velocity of material Km/sec

Pallakki NDT Excellance Center

*For reference only. PNEC not responsible for errors and omissions in the data if any.

 X_m = Metal distance F_w = Focal width θ = Angle unit

13. Unfocussed probe $F_w = N_w$

 $N = \frac{D^2 F}{4V}$

Where,

D=Dia. of the transducer F=Frequency of transducer V=Velocity of material

14. Offset distance

X-R $\frac{Vw}{Vm}$ Sin θ Where, X=offset distance, R=Radius of the job V_w=Velocity in water, θ = Refracted angle

V_m=Velocity in material

15. Limiting angle

 $\theta = \operatorname{Sin}^{-1} \left(\frac{ID}{OD}\right) \text{ or } \theta = \operatorname{Sin} \frac{2t}{OD}$ Thickness detected T = $\frac{D}{2}$ (1- Sin θ) Where, D = Dia. of job T = Thickness of job Thickness undetected from ID, T = $\frac{d1-d}{2}$ d₁ = D Sin θ d=ID of job

16. Tandom Technique X = 2(t-D) $\tan \theta$ Where,

X=Probe spacing (mm) T=Thickness of job (mm) D=Depth of defect (mm) θ =Angle unit

```
17. Velocity measurement
```

 $\frac{Actual \ thickness}{Actual \ Velocity} = \frac{Apparent \ Thickness}{Calibrated \ Velocity}$

18. Automation

a. PRR =
$$\frac{n \cdot s}{d_p}$$

Where,

PRR = Pulse Repetition Rate

N = No. of Hits S = Speed (m/s) D_p = Dia. of probe (mm) V = Velocity (Km/sec)

- b. $PRR = \frac{V}{2.x.n}$ Where, X = thickness N = No. of hits PRR = Pulse Repetition Rate
- 19. Time Taken for plate

 $T = \frac{Area of the plate}{W.S}$ Where, W = Scan width S = Speed

20. Surface Speed: $SI = D_m \times RPS$ Where, D_m = Metal Dia. RPS = Revolution

RPS = Revolution Per Seconds L = Length of the job W = Scan width

21. Velocity = $\frac{Distance Travelled}{Time}$

